Abstract
ObjectiveRecurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms. MethodsDimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey’s multiple comparison tests. ResultsAdding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05). ConclusionsThe novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.