Abstract
This study evaluates biofilm formation and barrier function against Streptococcus oralis of nonresorbable polytetrafluoroethylene (PTFE) guided bone regeneration membranes having expanded (e-PTFE) and dense (d-PTFE) microstructure. Three e-PTFE membranes of varying openness, one d-PTFE membrane, and commercially pure titanium discs were evaluated. All e-PTFE membranes consisted of PTFE nodes interconnected by fibrils. The d-PTFE membrane was fibril-free, with large evenly spaced indentations. The surfaces were challenged with S. oralis and incubated statically for 2-48h. Bacterial colonization, viability, and penetration were evaluated. S. oralis numbers increased over time on all surfaces, as observed using scanning electron microscopy, while cell viability decreased, as measured by colony forming unit (CFU) counting. At 24h and 48h, biofilms on d-PTFE were more mature and thicker (tower formations) than on e-PTFE, where fewer layers of cells were distributed mainly horizontally. Biofilms accumulated preferentially within d-PTFE membrane indentations. At 48h, greater biofilm biomass and number of viable S. oralis were found on d-PTFE compared to e-PTFE membranes. All membranes were impermeable to S. oralis cells. All PTFE membranes were effective barriers against bacterial passage in vitro. However, d-PTFE favored S. oralis biofilm formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.