Abstract

The objective of this study was to develop a novel folate receptor-targeted drug delivery system for retinoblastoma cells using doxorubicin (DOX) as a model drug. Biodegradable DOX-loaded poly(d,l-lactide-co-glycolide)-poly(ethylene glycol)-folate (PLGA-PEG-FOL) micelles (DOXM) were prepared with various solvents (dimethylsulfoxide, acetone, and dimethylformamide). The effects of solvents on entrapment efficiency, particle size, and polydispersity were examined. The effects of thermosensitive gel structure on the release of DOX from the DOXM were also studied. Qualitative and quantitative uptake studies of DOX and DOXM were carried out in Y-79 cell line. Cytotoxicity studies of DOXM were performed on Y-79 cells. Based on size, polydispersity, and entrapment efficiency, dimethylformamide was found to be the most suitable solvent for the preparation of DOXM. Dispersion of DOXM in PLGA-PEG-PLGA gel sustained drug release for a period of 2 weeks. Uptake of DOX was ∼4 times higher with DOXM than DOX in Y-79 cells overexpressing folate receptors. This was further confirmed from the quantitative uptake studies. DOXM exhibited higher cytotoxicity in Y-79 cells when compared with pure DOX. These polymeric micellar systems suspended in thermosensitive gels may provide sustained and targeted delivery of anticancer agents to retinoblastoma cells following intravitreal administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.