Abstract

Most drug delivery systems as treatment modalities for osteomyelitis have not been evaluated for resistant infections. Tigecycline (TG) is an antimicrobial agent that could be used in the treatment of multi-drug-resistant orthopedic infections. The objective of this in vitro study has been to determine what dosage of TG causes changes in the morphology and number of osteoblasts. We have also investigated whether nanoparticulate tigecycline-loaded calcium-phosphate/poly-DL-lactide-co-glycolide is biocompatible and whether it could release bioactive TG in a controlled manner during the observation time. The cytotoxicity was tested by analyzing the release of lactate dehydrogenase from dead osteoblasts to the medium. Staphylococcus aureus was used to verify the antibacterial effect of the multifunctional drug delivery system. At concentrations as achieved by local application, TG caused high toxic effect and impaired the normal osteoblastic morphology. The nanoparticulate multifunctional drug delivery system showed good compatibility and antibacterial effect during the observation time and thus appears to be suitable for the treatment of osteomyelitis caused by multi-drug-resistant microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.