Abstract

Current treatment of Chagas disease (CD) is based on two substances, nifurtimox (NT) and benzonidazole (BZ), both considered unsatisfactory mainly due to their low activities and high toxicity profile. One of the main challenges faced in CD management concerns the identification of new drugs active in the acute and chronic phases and with good pharmacokinetic profiles. In this work, we studied the bioactivity of twenty 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against Trypanosoma cruzi epimastigotes and trypomastigotes. We identified seven derivatives with promising activity against epimastigote forms with IC50 values ranging from 6µM to 44µM. Most of the compounds showed no significant toxicity against murine macrophages. Our initial investigation on the mechanism of action indicates that this series of compounds may exert their anti-parasitic effect, inducing cell membrane damage. The results in trypomastigotes showed that one derivative, PDAN 78, satisfactorily inhibited metabolic alteration at all concentrations. Moreover, we used molecular modeling to understand how tridimensional and structural aspects might influence the observed bioactivities. Finally, we also used in silico approaches to assess the potential pharmacokinetic and toxicological properties of the most active compounds. Our initial results indicate that this molecular scaffold might be a valuable prototype for novel and safe trypanocidal compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call