Abstract

Matrix metalloproteinase-1 and -8 are active during the wound healing and remodelling processes, degrading native extracellular matrix and implantable devices. However, traditional in vitro assays utilize primarily matrix metalloproteinase-1 to mimic the in vivo degradation microenvironment. Herein, we assessed the influence of various concentrations of matrix metalloproteinase- 1 and 8 (50, 100, and 200 U/mL) as a function of pH (5.5 and 7.4) and time (3, 6, 9, 12, and 24 h) on the degradation profile of three tissue grafts (chemically cross-linked Permacol, nonchemically cross-linked Permacol and nonchemically cross-linked Strattice) and a collagen biomaterial (nonchemically cross-linked collagen sponge). Chemically cross-linked and nonchemically cross-linked Permacol samples exhibited the highest resistance to enzymatic degradation, while nonchemically cross-linked collagen sponges exhibited the least resistance to enzymatic degradation. Qualitative and quantitative degradation analysis of all samples revealed a similar degradation profile over time, independently of the matrix metalloproteinase used and its respective concentration and pH. These data indicate that matrix metalloproteinase-1 and matrix metalloproteinase-8 exhibit similar degradation profile in vitro, suggesting that matrix metalloproteinase-8 should be used for collagenase assay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call