Abstract

A chlorosome is a large and efficient light-harvesting antenna system found in some photosynthetic bacteria. This system comprises self-aggregates of bacteriochlorophyll (BChl) c, d, or e possessing a chiral 1-hydroxyethyl group at the 3-position, which plays a key role in the formation of the supramolecule. Biosynthesis of chlorosomal pigments involves stereoselective conversion of 3-vinyl group to 3-(1-hydroxyethyl) group facilitated by a 3-vinyl hydratase. This 3-vinyl hydration also occurs in BChl a biosynthesis, followed by oxidation that introduces an acetyl group at the 3-position. Herein, we present in vitro enzymatic assays of paralogous 3-vinyl hydratases derived from green sulfur bacteria, Chlorobaculum tepidum and Chlorobaculum limnaeum, the filamentous anoxygenic phototroph Chloroflexus aurantiacus, and the chloracidobacterium Chloracidobacterium thermophilum. All the hydratases showed hydration activities. The biosynthetic pathway of BChl a and other chlorosomal pigments is discussed considering the substrate specificity and stereoselectivity of the present hydratases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.