Abstract

This study developed biodegradable bi-layered drug-eluting beads and investigated the in-vitro release of fluorouracil and cisplatin from the beads. To manufacture the drug-eluting beads, poly[(d,l)-lactide-co-glycolide] (PLGA) with lactide:glycolide ratios of 50:50 and 75:25 were mixed with fluorouracil or cisplatin. The mixture was compressed and sintered at <TEX>$55^{\circ}C$</TEX> to form bi-layered beads. An elution method was employed to characterize the release characteristic of the pharmaceuticals over a 30-day period at <TEX>$37^{\circ}C$</TEX>. The influence of polymer type (i.e., 50:50 or 75:25 PLGA) and layer layout on the release characteristics was investigated. The experiment suggested that biodegradable beads released high concentrations of fluorouracil and cisplatin for more than 30 days. The 75:25 PLGA released the pharmaceuticals at a slower rate than the 50:50 PLGA. In addition, the bi-layered structure reduced the release rate of drugs from the core layer of the beads. By adopting the compression sintering technique, we will be able to manufacture biodegradable beads for long-term drug delivery of various anti-cancer pharmaceuticals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.