Abstract

Anti-drug antibodies (ADAs), specific for biotherapeutic drugs, are associated with reduced serum drug levels and compromised therapeutic response. The impact of ADA on the bioavailability and clinical efficacy of blockbuster anti-hTNF-α monoclonal antibodies is well recognised, especially for adalimumab and infliximab treatments, with the large and complex molecular architecture of classical immunoglobulin antibody drugs, in part, responsible for the immunogenicity seen in patients. The initial aim of this study was to develop solid-phase enzyme-linked immunosorbent assays (ELISA) and an in vitro cell-based method to accurately detect ADA and estimate its impact on the preclinical in vivo efficacy outcomes of two novel, nonimmunoglobulin VNAR fusion anti-hTNF-α biologics (Quad-X™ and D1-NDure™-C4) and Humira®, a brand of adalimumab. Serum drug levels and the presence of ADA were determined in a transgenic mouse model of polyarthritis (Tg197) when Quad-X™ and Humira® were dosed at 1 mg/kg and D1-NDure™-C4 was dosed at 30 mg/kg. The serum levels of the Quad-X™ and D1-NDure™-C4 modalities were consistently high and comparable across all mice within the same treatment groups. In 1 mg/kg and 3 mg/kg Quad-X™- and 30 mg/kg D1-NDure™-C4-treated mice, an average trough drug serum concentration of 8 μg/mL, 50 μg/mL, and 350 μg/mL, respectively, were estimated. In stark contrast, Humira® trough serum concentrations in the 1 mg/kg treatment group ranged from <0.008 μg/mL to 4 μg/mL with trace levels detected in 7 of the 8 animals treated. Trough serum Humira® and Quad-X™ concentrations in 3 mg/kg treatment samples were comparable; however, the functionality of the detected Humira® serum was significantly compromised due to neutralising ADA. The impact of ADA went beyond the simple and rapid clearance of Humira®, as 7/8 serum samples also showed no detectable capacity to neutralise hTNF-α-mediated cytotoxicity in a murine fibrosarcoma (L929) cell assay. The neutralisation capacity of all the VNAR constructs remained unchanged at the end of the experimental period (10 weeks). The data presented in this manuscript goes some way to explain the exciting outcomes of the previously published preclinical in vivo efficacy data, which showed complete control of disease at Quad-X™ concentrations of 0.5 mg/kg, equivalent to 10x the in vivo potency of Humira®. This independent corroboration also validates the robustness and reliability of the assay techniques reported in this current manuscript, and while it comes with the caveat of a mouse study, it does appear to suggest that these particular VNAR constructs, at least, are of low inherent immunogenicity.

Highlights

  • Therapeutic monoclonal antibodies have seen great success in the treatment of a wide range of conditions ranging from autoinflammatory diseases to cancers

  • We describe the application of solid-phase enzyme-linked immunosorbent assays (ELISA) and classical in vitro cell-based approaches to evaluate the presence of an anti-hTNF-α drug and Anti-drug antibodies (ADAs) in trough mouse serum samples prepared from a transgenic mouse model of human rheumatoid arthritis (RA) disease

  • The detection, of low or no drug-mouse ADA complex could mean that either there is no ADA bound to the drug, or that free circulating serum mouse IgG preferentially occupied the capture anti-mouse IgG antibody, especially if levels of circulating drug-mouse ADA are depleted as a result of drug clearance mediated by ADA activity

Read more

Summary

Introduction

Therapeutic monoclonal antibodies have seen great success in the treatment of a wide range of conditions ranging from autoinflammatory diseases to cancers. The structurally less complex biologics delivered from the variable new antigen receptor (VNAR) drug platform, and related humanised formats known as soloMERsTM [19,20,21,22], have both previously been reported as having inherently low immunogenicity in a classical dendritic cell-T-cell assay [21]. Their smaller molecular size, simple single-chain format, minimal requirements for posttranslational modification, and excellent stability, may all contribute to this low immunogenicity profile

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call