Abstract

The clearance of overloaded amyloid β (Aβ) oligomers is thought to be an attractive and potential strategy for the therapy of Alzheimer’s disease (AD). A variety of strategies have already been utilized to study Aβ degradation in vitro. Here, the electrochemical detection based on direct electrooxidation of specific Tyr residues within Aβ peptide has been developed as a simple and robust approach for monitoring the oligomers’ degradation. C60 was employed for photodegrading Aβ oligomers due to the generated ROS under light irradiation. The oxidation current of Tyr residues by square wave voltammetry (SWV) increased upon the Aβ degradation, confirming that the structure variation of Aβ peptide indeed influenced the exposure of those redox species to the electrode surface and final signal output. Chronoamperometric assay also found the electrooxidation of Tyr undergone an irreversible process. Additionally, the direct electrochemistry was capable of detecting the aggregation with rapid test and better sensitivity in compared with dynamic light scattering (DLS), atomic force microscopy (AFM) and thioflavin T (ThT) based fluorescence assay. Thus, this work indicated the potential application of direct electrochemistry in the in vitro measurement of Aβ degradation and clearance, providing new insights and a complementary means into the AD theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.