Abstract

Many helminth parasites have evolved strategies to evade the immune response of their hosts, which includes immunomodulation. Prostaglandin E2 (PGE2) is one of the best-described immunomodulators in mammalian helminth parasite infections. We hypothesized that also in teleost fish anti-helminthic immune responses are regulated via PGE2. We used a model system consisting of the tapeworm Schistocephalus solidus and its host, the three-spined stickleback (Gasterosteus aculeatus), to investigate in vitro effects of PGE2 on head kidney leucocytes (HKL) derived from sticklebacks that were experimentally infected with S. solidus. PGE2 was tested alone or in combination with either S. solidus antigens or bacterial lipopolysaccharides (LPS). After in vitro culture, cell viability and changes in leucocyte subpopulations (granulocytes to lymphocytes ratios) were monitored by flow cytometry and HKL were tested for their capacity to produce reactive oxygen species (ROS) with a chemiluminescence assay. In short term (2 h) HKL cultures PGE2 did not change the total numbers of live HKL, but the production of ROS decreased significantly with high (0.1 μmol L−1) PGE2 concentrations. In long-term (96 h) cultures high PGE2 concentrations induced a sharp decrease of leucocytes viability, while low (0.1 pmol L−1) and intermediate (0.1 nmol L−1) concentrations of PGE2 caused elevated leucocyte viability compared to controls. This coincided with reduced ROS production in cultures with high PGE2 and elevated ROS production in cultures with low PGE2. Granulocyte to lymphocyte ratios increased with high PGE2 concentrations alone and in combination with S. solidus antigens and LPS, most prominently with HKL from S. solidus infected sticklebacks. The present study supports the hypothesis that PGE2 might be an immunomodulator in tapeworm–fish parasite–host interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call