Abstract

BackgroundThe calcium sensitizer levosimendan is increasingly used to improve hemodynamics in patients with acutely decompensated heart failure. By binding to cardiac troponin C the conformation of the calcium-troponin C complex is stabilized, which leads to acceleration of actin-myosin crossbrigde formation and increased force generating capacity of muscle fibers. Besides indications in cardiac failure, beneficial effects of levosimendan in skeletal muscle disorders are currently evaluated. The aim of this study was to investigate differential effects of levosimendan on skeletal muscle of pigs with and without susceptibility to malignant hyperthermia (MH) in order to identify possible risks of this emerging drug for patients with predisposition to MH.MethodsMuscle bundles of 17 pigs (9 MH susceptible (MHS); 8 MH non-susceptible (MHN)) were excised under general anesthesia and examined in the tissue bath with increasing concentrations of levosimendan (0.065; 0.125; 0.5; 1.0; 10 and 50 μg/ml). Baseline tension and twitch force were monitored continuously. Data are presented as median and interquartile range. Statistical evaluation was performed using D’Agostino & Pearson test for normal distribution and student’s t test and 2-way ANOVA for differences between the groups. P < 0.05 was considered significant.ResultsThere were no differences between the groups concerning length, weight, initial twitch force and pre-drug resting tension of the investigated muscle strips. After an initial decrease in both groups, twitch amplitude was significantly higher in MHN (− 3.0 [− 5.2–0.2] mN) compared to MHS (− 7.5 [− 10.8- -4.5] mN) (p = 0.0034) muscle at an applied levosimendan concentration of 50 μg/ml. A marked increase in resting tension was detected following levosimendan incubation with 50 μg/ml in MHS muscle bundles (3.3 [0.9–6.1] mN) compared to MHN (− 0.7 [− 1.3–0.0] mN) (p < 0.0001).ConclusionsThis in vitro investigation revealed the development of significant contractures in muscle bundles of MHS pigs after incubation with levosimendan. However, the effect appeared only at supra-therapeutic concentrations and further research is needed to determine the impact of levosimendan on MHS individuals in vivo.

Highlights

  • The calcium sensitizer levosimendan is increasingly used to improve hemodynamics in patients with acutely decompensated heart failure

  • One of the two investigated muscle bundles per animal had to be excluded from the study because they failed to reach the pre-assigned minimum twitch force of 10 mN in three MHS pigs and one MH non-susceptible (MHN) pig

  • With cumulative levosimendan concentrations ≤10 μg/ml an initial decrease of twitch amplitude in both groups was observed, while at 50 μg/ml twitch amplitude was significantly higher in MHN (− 3.0 [− 5.2–0.2] mN) compared to MHS (− 7.5 [− 10.8- -4.5] mN) (p = 0.0034) muscle bundles (Fig. 1)

Read more

Summary

Introduction

The calcium sensitizer levosimendan is increasingly used to improve hemodynamics in patients with acutely decompensated heart failure. The aim of this study was to investigate differential effects of levosimendan on skeletal muscle of pigs with and without susceptibility to malignant hyperthermia (MH) in order to identify possible risks of this emerging drug for patients with predisposition to MH. Schuster et al BMC Anesthesiology (2018) 18:182 pre-existing imbalance of calcium homeostasis might be associated with severe side effects for the patient, if calcium-modulating or sensitizing drugs are used. The drug-induced deterioration of calcium homeostasis by calcium efflux from the sarcoplasmic reticulum represents the main pathomechanism of a developing MH crisis, different molecular pathways leading to an increase in intracellular calcium concentration may influence the metabolic state in MH-susceptible (MHS) muscle cells.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call