Abstract

BackgroundMycobacterium abscessus complex (MABC) pulmonary disease is notoriously difficult to treat due to intrinsic resistance to many common antibiotics. MABC is β-lactam-resistant as it produces class A β-lactamases, such as blaMab, which are inhibited by diazabicyclooctane (DBO) β-lactamase inhibitors. ObjectivesTo investigate the microbiological effects of the combination of β-lactam and DBO β-lactamase inhibitors (relebactam and nacubactam) against MABC and determine if the effects are associated with the MABC subspecies and colony morphotype. MethodsThe antimicrobial susceptibility of three type strains and 20 clinical isolates of MABC to the combination of seven β-lactams with relebactam or nacubactam was evaluated using broth microdilution checkerboard assays. For these strains, expression levels of blaMab were assessed using quantitative real-time polymerase chain reaction and genotypic diversity was evaluated using 18-locus variable number tandem repeat assay. ResultsRelebactam and nacubactam lowered the minimum inhibitory concentrations of β-lactams, particularly imipenem, meropenem, and tebipenem, against MABC. There was no difference in efficacy of combination treatment between three subspecies, but rough morphotypes tended to be less susceptible than smooth morphotypes. There were no differences in blaMab expression levels and genotypic diversity between the morphotypes. ConclusionsThe combination of β-lactam with relebactam or nacubactam improved the efficacy of β-lactams against all MABC subspecies, but higher concentrations of β-lactams were needed for rough morphotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call