Abstract

BackgroundIn the search for anticancer agents, a promising 17-β-estradiol metabolite, 2-methoxyestradiol (2ME2) was found that exerts antiproliferative in vitro and in vivo activity. Since 2ME2 has limited biological accessibility and rapid metabolic degradation, the purpose of this study was to investigate the in vitro influence exerted by an analogue of 2ME2 namely 2-methoxyestradiol-bis-sulphamate (2MEBM) in a breast adenocarcinoma cell line (MCF-7).MethodsThis was conducted by investigating 2MEBM's in vitro influence on cell cycle progression, mitochondrial membrane potential and possible production of reactive oxygen species (ROS) generation. In vitro effects of 2MEBM on cell cycle progression was demonstrated by means of flow cytometry using propidium iodide. Hydrogen peroxide and superoxide production was investigated using 2,7-dichlorofluorescein diacetate and hydroethidine, respectively. The probable reduction in the mitochondrial membrane potential was demonstrated using a MitoCapture™ kit.ResultsCell cycle progression revealed the presence of a sub-G1 apoptotic peak. Reduction of mitochondrial membrane potential after exposure to 2MEBM was demonstrated and an increase in ROS production was also observed.ConclusionThis study verified that 2MEBM exposure resulted in apoptosis induction, increased ROS production and reduced mitochondrial membrane potential in a tumorigenic breast epithelial cell line. Data obtained from this project contributes to the unravelling of the in vitro signal transduction of 2MEBM in tumorigenic cell lines.

Highlights

  • In the search for anticancer agents, a promising 17-b-estradiol metabolite, 2-methoxyestradiol (2ME2) was found that exerts antiproliferative in vitro and in vivo activity

  • The fluorescence activated cell sorting (FACS) FC500 System flow cytometer equipped with an air-cooled argon laser excited at 488 nm was supplied by Beckman Coulter South Africa (Pty) Ltd. (Pretoria, South Africa)

  • Cell cycle progression DNA content analyses by means of flow cytometry showed no increase of cells occupying the G2/M phase in 2MEBM-treated cells compared to vehicle-treated cells

Read more

Summary

Objectives

Since 2ME2 has limited biological accessibility and rapid metabolic degradation, the purpose of this study was to investigate the in vitro influence exerted by an analogue of 2ME2 namely 2-methoxyestradiol-bis-sulphamate (2MEBM) in a breast adenocarcinoma cell line (MCF-7). Since several questions remain regarding the in vitro influence of 2MEBM, this study aimed to investigate whether 2MEBM alters cell cycle progression and mitochondrial membrane integrity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call