Abstract

BackgroundAntimicrobial photodynamic therapy has been proposed as an alternative to suppress subgingival species. This results from the balance among Streptococcus sanguis, Streptococcus mutans and Candida albicans in the dental biofilm. Not all the photosensitizers have the same photodynamic effect against the different microorganims. The objective of this study is to compare in vitro the photodynamic effect of methylene blue (MB), rose Bengal (RB) and curcumin (CUR) in combination with white light on the cariogenic microorganism S. mutans, S. sanguis and C. albicans.ResultsPhotodynamic therapy with MB, RB and CUR inhibited 6 log 10 the growth of both bacteria but at different concentrations: 0.31–0.62 μg/ml and 0.62–1.25 μg/ml RB were needed to photoinactivate S. mutans and S. sanguis, respectively; 1.25–2.5 μg/ml MB for both species; whereas higher CUR concentrations (80–160 μg/ml and 160–320 μg/ml) were required to obtain the same reduction in S. mutans and S. sanguis viability respectively. The minimal fungicidal concentration of MB for 5 log10 CFU reduction (4.5 McFarland) was 80–160 μg/ml, whereas for RB it ranged between 320 and 640 μg/ml. For CUR, even the maximum studied concentration (1280 μg/ml) did not reach that inhibition. Incubation time had no effect in all experiments.ConclusionsPhotodynamic therapy with RB, MB and CUR and white light is effective in killing S. mutans and S. sanguis strains, although MB and RB are more efficient than CUR. C. albicans required higher concentrations of all photosensitizers to obtain a fungicidal effect, being MB the most efficient and CUR ineffective.

Highlights

  • Antimicrobial photodynamic therapy has been proposed as an alternative to suppress subgingival species

  • Less concentration of rose Bengal (RB) than of the other PSs was needed to kill Streptococcus spp. Whereas this bactericidal effect was achieved for S. mutans with a concentration of RB as low as 0.31–0.62 μg/ml, higher methylene blue (MB) concentration (1.25–2.5 μg/ml) was needed to reach the same reduction

  • In the case of S. sanguis, the RB and MB concentrations needed to obtain the same bactericidal effect were quite similar to those used for S.mutans (0.62–1.25 μg/ml and 1.25–2.5 μg/ml, respectively)

Read more

Summary

Introduction

Antimicrobial photodynamic therapy has been proposed as an alternative to suppress subgingival species This results from the balance among Streptococcus sanguis, Streptococcus mutans and Candida albicans in the dental biofilm. (aPDT) is a technique that utilizes reactive oxygen species (ROS) produced by non-toxic dye or photosensitizer (PS) molecules in the presence of low intensity visible light to kill mammalian or microbial cells [11]. Due to this mechanism, It is hypothesized that bacteria will not be able to develop resistance to PDT [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call