Abstract

Advanced glycation end-products (AGEs) are elevated in the sera of diabetic patients. The latter are prone to severe bacterial infections. Advanced glycation end-products have been shown to modulate immune competent cell activities. In this study we examined the in vitro effect of advanced glycation end-products on superoxide anion generation by human polymorphonuclear leukocytes. Advanced glycation end-products were prepared by incubation of bovine serum albumin (BSA) with glucose for 90 days. Superoxide production was measured as the superoxide dismutase-inhibitable reduction of ferricytochrome c. The effect of advanced glycation end-products on superoxide production was evaluated in both baseline (nonstimulated) and stimulated (by either formyl-methionyl-leucyl-phenylalanine, or phorbol-myristate-acetate) polymorphonuclear leukocytes. The baseline superoxide production of polymorphonuclear leukocytes was significantly increased by advanced glycation end-products in a dose-dependent manner. In contrast, in stimulated polymorphonuclear leukocytes advanced glycation end-products significantly inhibited superoxide production, again in a dose-dependent manner. This inhibitory effect of advanced glycation end-products was observed after dialyzing AGE-BSA, thereby eliminating the possible influence of reactive carbohydrates. No modification of superoxide production was seen with BSA and only a mild inhibitory effect of glucose at high concentrations. Advanced glycation end-products depress superoxide production by stimulated polymorphonuclear leukocytes. As superoxide plays an essential role in bactericidal activity, this polymorphonuclear leukocyte dysfunction may be a contributory factor to the increased prevalence and severity of bacterial infection seen in diabetic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.