Abstract

BackgroundMost conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations therefore could diminish the side effects and improve the life quality of the patients. Thus, a suitable controlled drug delivery system is extremely important for chemotherapy.ResultsA novel biodegradable thermosensitive composite hydrogel, based on poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) and Pluronic F127 copolymer, was successfully prepared in this work, which underwent thermosensitive sol-gel-sol transition. And it was flowing sol at ambient temperature but became non-flowing gel at body temperature. By varying the composition, sol-gel-sol transition and in vitro drug release behavior of the composite hydrogel could be adjusted. Cytotoxicity of the composite hydrogel was conducted by cell viability assay using human HEK293 cells. The 293 cell viability of composite hydrogel copolymers were yet higher than 71.4%, even when the input copolymers were 500 μg per well. Vitamin B12 (VB12), honokiol (HK), and bovine serum albumin (BSA) were used as model drugs to investigate the in vitro release behavior of hydrophilic small molecular drug, hydrophobic small molecular drug, and protein drug from the composite hydrogel respectively. All the above-mentioned drugs in this work could be released slowly from composite hydrogel in an extended period. Chemical composition of composite hydrogel, initial drug loading, and hydrogel concentration substantially affected the drug release behavior. The higher Pluronic F127 content, lower initial drug loading amount, or lower hydrogel concentration resulted in higher cumulative release rate.ConclusionThe results showed that composite hydrogel prepared in this paper were biocompatible with low cell cytotoxicity, and the drugs in this work could be released slowly from composite hydrogel in an extended period, which suggested that the composite hydrogel might have great potential applications in biomedical fields.

Highlights

  • Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels

  • In our last work [32], we prepared a new biodegradable and injectable composite hydrogel based on poly(ε-caprolactone)-poly(ethylene glycol)-poly(εcaprolactone) copolymer (PECE) and Pluronic F127 copolymer

  • Ring-opening copolymerization of ε-CL onto Poly(ethylene glycol) methyl ether (MPEG) was performed to synthesis poly(ethylene glycol) (PEG)-PCL diblock copolymers, and stannous octoate was used as catalyst

Read more

Summary

Introduction

Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations could diminish the side effects and improve the life quality of the patients. Most conventional methods for delivering chemotherapeutic agents, such as intravenous injection or oral ingestion, fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems (DDS) are designed to deliver drugs at predetermined rates for predefined periods at the target organ, which could be used to overcome the shortcomings of conventional drug formulations, could diminish the side effects and improve the life quality of the patients [2,3]. A suitable controlled drug delivery system is extremely important for chemotherapy

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call