Abstract

Nanohydrogels (NHs) with the benefits of both nanomaterials and hydrogels unlock novel opportunities and applications in biomedicine. Nowadays, cationic NHs have attracted attention in the delivery of genetic materials into cells. Herein, by using reversible addition-fragmentation chain transfer method, an NH-based poly(hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and cross-linked by poly(ethylene glycol)diacrylate with pH responsiveness character was developed. Several techniques including nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and gel permeation chromatography confirmed the success in the synthesis. The pH responsiveness of the developed NH was shown by transmission electron microscopy and dynamic light scattering technique. The average sizes of NHs in the normal (7.4) and acidic pH (5.5) were 180 and 390nm, respectively. The ability of the developed NH to condense genetic materials was checked using gel retardation assay with different ratios of NH and pCMV6-IRES-AcGFP, as a plasmid encoding green fluorescence protein. Results of gel retardation assay showed a decreasing trend in plasmid electrophoretic mobility with the increase in the NH concentration. The NH/plasmid complexes were stopped completely at the ratio of 5 and the plasmid band vanished at the ratio of 10. The quantitative and qualitative results of the cell transfection experiment using different ratios of NH/plasmid showed the ability of NH to carry plasmid molecules into the cancerous cells. The best transfection efficiency was observed by nanohydrogel/plasmid weight ratio of 10, while other ratios including 2, 5 and 20 showed 0.8, 10 and 12% of transfection efficiency, respectively. All the assessed factors showed that NH has the potential to be considered as an efficient gene delivery vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call