Abstract

Nicotinamide Mononucleotide (NMN) is a derivative of vitamin B3, which plays a significant role in a plethora of metabolic reactions in the human body and is intricately associated with both immunity and metabolism. Nonetheless, in the intestine metabolic pathway of NMN and the relationship between NMN, gut microbiota, and SCFAs remain hitherto obscure. This study examined the digestion of NMN in simulated saliva, gastric, and small intestine environments, as well as exploring the interaction between NMN and human gut microbiota utilizing an in vitro fermentation model. NMN was progressively degraded into nicotinamide ribose (NR), nicotinamide (NAM), and ribose, with niacinate (NA) constituting the ultimate degradation product due to hydrolysis and metabolism by microbiota. NMN was ingested by human intestinal microbiota with a slower fermentation rate. As a result of NMN ingestion by human gut bacteria,the concentrations of propionate and butyrate increased by 88% and 23%, respectively, compared to the blank control group, the proliferation of beneficial gut bacteria (Bifidobacterium, Phascolarctobacterium, Faecalibacteriun, and Alistipes) significantly increased, while the proliferation of some harmful bacteria (Sutterella, Desulfovibrio and Pseudomonas) drastically declined. These findings illustrated the metabolic processes of NMN in the intestine, elaborating the relationship between NMN, SCFAs and gut microbiota. NMN might be a potential prebiotic to improve intestinal health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call