Abstract

The purpose of this study was to prepare sodium alginate (SA)/pectin (PE) hydrogel microspheres using the extrusion method to encapsulate Lactobacillus bulgaricus. Microscopic observation showed that the beads were spherical with a smooth and uniform surface. For microspheres with a diameter range of 140–156 μm, the encapsulation efficiency reached 85.67%. After simulating saliva, gastric juice, and intestinal juice, the activity of the microcapsules was estimated to be 5.78 × 104 log colony forming unit (CFU)/mL. These data show that the use of SA and PE encapsulated probiotics exhibit enhanced viability. In addition, double-layer beads containing probiotic microspheres and yogurt were prepared, and physical and chemical analysis was performed using scanning electron microscopy, Fourier-transform infrared spectroscopy, and differential scanning calorimetry. Texture and sensory property analysis revealed that the beads had good elasticity, chewiness, and high commercial value. Collectively, these findings indicate that SA and PE can be used for the encapsulation, protection, and gastrointestinal delivery of probiotics. Moreover, these microcapsules exhibit good stability in vitro and improve yogurt characteristics by increasing the survival rate of encapsulated probiotics, thus demonstrating their commercial application potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call