Abstract

Embryonic stem cells (ESCs) differentiation via embryoid body (EB) formation is an established method that generates the three germ layers. However, EB differentiation poses several problems including formation of heterogeneous cell populations. Herein, we described a differentiation protocol on enhancing mesoderm derivation from murine ESCs (mESCs) using conditioned medium (CM) from HepG2 cells. We used this technique to direct hematopoiesis by generating "embryoid-like" colonies (ELCs) from murine (m) ESCs without following standard formation of EBs. Our CM-mESCs group yielded an almost fivefold increase in ELC formation (p ≤ 0.05) and higher expression of mesoderm genes;-Brachyury-T, Goosecoid, and Flk-1 compared with control mESCs group. Hematopoietic colony formation from CM-mESCs was also enhanced by twofold at days 7 and 14 with earlier colony commitment compared to control mESCs (p ≤ 0.05). This early clonogenic capacity was confirmed morphologically by the presence of nucleated erythrocytes and macrophages as early as day 7 in culture using standard 14-day colony-forming assay. Early expression of hematopoietic primitive (ζ-globin) and definitive (β-globin) erythroid genes and proteins was also observed by day 7 in the CM-treated culture. These data indicate that hematopoietic cells more quickly differentiate from CM-treated, compared with those using standard EB approaches, and provide an efficient bioprocess platform for erythroid-specific differentiation of ESCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.