Abstract

Trypsin has been shown to disrupt normal in vitro morphogenesis of embryonic organ rudiments. Otic tissues derived from 11-, 12-, and 13-day-old mouse embryos were exposed to either Ca++- and Mg++-free PBS or 0.25% trypsin dissolved in Ca++- and Mg++-free PBS prior to explanation into organ culture. Trypsin treatment of otic explants disrupted the expression of the normal pattern of inner-ear development in vitro. There was a direct correlation between the embryonic age at time of exposure to trypsin and the severity of dysmorphogenesis of the inner ear. The younger explants showed abnormalities of both vestibular and auditory structures, whereas with increasing embryonic age, abnormalities were confined more to the auditory portion of the inner ear. The results suggest that integrity of the otocyst basal lamina and epitheliomesenchymal tissue interactions are important factors in early otic development. It is postulated that the major effect of trypsin on inner-ear morphogenesis is through disruption of these factors, which may act to regulate the progressive expression of early otic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call