Abstract

Drug-coated balloons are medical devices designed to locally deliver drug to diseased segments of the vessel wall. For these dosage forms, drug transfer to the vessel wall needs to be examined in detail, since drug released into the blood is cleared from the site. In order to examine drug transfer, a new in vitro setup was developed combining the estimation of drug loss during advancement to the site of application in a model coronary artery pathway with a hydrogel compartment representing, as a very simplified model, the vessel wall. The transfer of fluorescent model substances as well as the drug paclitaxel from coated balloons to the simulated vessel wall was evaluated using this method. The model was suitable to quantify the fractions transferred to the hydrogel and also to qualitatively assess distribution patterns in the hydrogel film. In the case of fluorescein sodium, rhodamin b and paclitaxel, vast amounts of the coated substance were lost during the simulated passage and only very small fractions of about 1% of the total load were transferred to the gel. This must be attributed to good water solubility of the fluorescent substances and the mechanical instability of the paclitaxel coating. Transfer of the hydrophobic model substance triamterene was however nearly unaffected by the preliminary tracking procedure with transferred fractions ranging from 8% to 14%. Analysis of model substance distribution yielded inhomogeneous distributions indicating that the coating was not evenly distributed on the balloon surface and that a great fraction of the coating liquid did not penetrate the folds of the balloon. This finding is contradictory to the generally accepted assumption of a drug depot inside the folds and emphasizes the necessity to thoroughly characterize in vitro performance of drug-coated balloons to support the very promising clinical data.

Highlights

  • Drug-coated balloons (DCB, in this context referring to coated angioplasty catheter balloons) are drug-device combination products designed to deliver drug locally to certain diseased segments of the vessel wall

  • In comparison to some traditional dosage forms, the examination of drug release into stirred media will not answer the questions associated with this type of delivery, since only drug transferred to the vessel wall will be able to impart the desired effect, while drug released into the blood will be cleared from the site

  • It was the aim of this study to establish a method for in vitro examination of drug transfer from DCB to a simulated vessel wall under consideration of some of the conditions prevailing during in vivo application, and to test the release from balloons coated with model substances of different physicochemical properties, as well as the clinically used drug PTX

Read more

Summary

Introduction

Drug-coated balloons (DCB, in this context referring to coated angioplasty catheter balloons) are drug-device combination products designed to deliver drug locally to certain diseased segments of the vessel wall. While a fairly large number of reported clinical studies including different types of lesions, patients, and locations has not been able to resolve the existing uncertainties [6], hardly any literature on in vitro characterization of these devices has been published. Many assumptions regarding drug transfer from DCB to the vessel wall exist, which have not been properly evidenced by published data until to-date. It was the aim of this study to establish a method for in vitro examination of drug transfer from DCB to a simulated vessel wall under consideration of some of the conditions prevailing during in vivo application, and to test the release from balloons coated with model substances of different physicochemical properties, as well as the clinically used drug PTX

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call