Abstract

Pathological confirmation is desired prior to high-risk surgery for suspected perihilar cholangiocarcinoma (PHC), but preoperative tissue diagnosis is limited by poor sensitivity of available techniques. This study aimed to validate whether a tumor-specific enhanced green fluorescent protein (eGFP)-expressing oncolytic virus could be used for cholangiocarcinoma (CC) cell detection. Extrahepatic CC cell lines SK-ChA-1, EGI-1, TFK-1 and control cells (primary human liver cells) were exposed to the oncolytic herpes simplex type 1 virus NV1066 for up to 24 h in adherent culture. The technique was validated for cells in suspension and cultured cells that had been exposed to crude patient bile. Optimal incubation time of the CC cells with NV1066 at a multiplicity of infection of 0.1 was determined at 6-8 h, yielding 15% eGFP-expressing cells, as measured by flow cytometry. Cells were able to survive 2-h crude bile exposure and remained capable of producing eGFP following NV1066 infection. Detection of malignant cells was possible at the highest dilution tested (10 CC cells among 2 × 105 control cells), though hampered by non-target cell autofluorescence. The technique was not applicable to cells in suspension due to insufficient eGFP production. Accordingly, as yet the technique is not suitable for standardized clinical diagnostics in PHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call