Abstract
ObjectivesTo investigate the deposition, formation of hydroxyapatite (HAP) and acid resistance of dentine surfaces following brushing with a toothpaste containing calcium silicate and sodium phosphate (CSSP) and fluoride in vitro. MethodsHuman dentine specimens were brushed with a slurry of CSSP toothpaste followed by exposure to simulated oral fluid (SOF) in two in vitro studies, with a silica-based non-occluding toothpaste as control. The surface and tubule deposits were analysed after 14 cycles with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In a third study, dentine specimens were additionally exposed to citric acid erosive challenges for 30, 300 or 600 s after 2, 6, 10 and 14 cycles of SOF and either the CSSP toothpaste or a positive control toothpaste containing calcium sodium phosphosilicate and fluoride. The level of tubule occlusion was evaluated using SEM. ResultsThe SEM analyses indicated complete coverage of the dentine surface following 14 cycles of brushing with CSSP toothpaste with no observable patent tubules, in contrast to the non-occluding control toothpaste. The TEM and SAED analyses confirmed the deposited material on the surface and within tubules was HAP. The deposited material from CSSP toothpaste was more acid resistant than the deposited material from the positive control toothpaste at all time points and acid exposure levels (p < 0.05). ConclusionsThe CSSP toothpaste fully occluded dentine tubules and formed the mineral HAP. The dentine deposition on and within dentine tubules was resilient to acid erosive challenges. Clinical significanceA novel toothpaste containing CSSP can form HAP on dentine surfaces and within tubules. The potential of this technology is for a novel approach for the protection of dentine surfaces to acid challenges and the reduction of dentine hypersensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.