Abstract
Cell-free extracts of Clostridium bifermentans DPH-1 catalyzed tetrachloroethylene (PCE) dechlorination. PCE degradation was stimulated by addition of a variety of electron donors. Ethanol (0.61 mM) was the most effective electron donor for PCE dechlorination. Maximum activity was recorded at 30°C and pH 7.5. Addition of NADH as a cofactor stimulated enzymatic activity but the activity was not stimulated by addition of metal ions. When the cell-free enzyme extract was incubated in the presence of titanium citrate as a reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (0.5 mM). The activity of propyl-iodide-reacted enzyme was restored by illumination with a 250 W lamp. The dehalogenase activity was also inhibited by cyanide. The substrate spectrum of activity included trichloroethylene (TCE), cis-1,2-dichloroethylene (cDCE), trans-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and 1,1,2-trichloroethane. The highest rate of degradation of the chlorinated aliphatic compounds was achieved with PCE, and PCE was principally degraded via TCE to cDCE. Results indicate that the dehalogenase could play a vital role in the breakdown of PCE as well as a variety of other chlorinated aliphatic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.