Abstract
The aim of this study is to investigate the in vitro degradation of electrolytically deposited calcium phosphate coatings in the presence of osteoclast-like cells. Titanium alloy plates electrolytically coated with calcium phosphate with or without chitosan were incubated with RAW264.7 cells for 14 days. The TRAP activity was measured and the cell attachment and proliferation capacity were analyzed. The calcium ion concentrations in the culture medium before and after incubation were calculated. Both coatings were observed with scanning electron microscopy and characterized through an x-ray diffractometer and Fourier transform infrared spectrum. The RAW264.7 cells differentiated into TRAP-positive osteoclast-like cells on both coatings after 7 days. Although presenting different cell attachment pattern, the RAW264.7 cells demonstrated the similar TRAP activity and proliferation capacity. It was found that the calcium ion concentrations in the medium decreased at the beginning, but increased after 11 and 14 days. The chitosan containing coatings had higher Ca2+ concentration in the medium compared to that without chitosan. Besides, the incubation of coatings with cells induced higher calcium ion concentrations than those without cells at day 11 and day 14. Despite the structural changes of dissolution pits and osteoclastic resorption lacunae present on both coatings, the x-ray diffractometer and Fourier transform infrared spectrum showed few alternations in their chemical compositions. Both electrodeposited calcium phosphate coatings can be resorbed by osteoclast-like RAW264.7 cells and dissolved in the culture medium in vitro. The degradation brings little change to the chemical compositions of both coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.