Abstract

Biodegradable porous iron having topologically ordered porosity and tailorable properties as per the required application has been the major requirement in the field of biodegradable biomaterials. Hence, in the present study, iron scaffolds with the topologically ordered porous structure were developed and for the first time, the effect of the variation in the topology on the in vitro degradation behaviour, cytocompatibility and hemocompatibility were investigated. Iron scaffold samples were fabricated using a novel process based on the combination of 3D printing and pressureless microwave sintering. To investigate the effect of topology, two different types of topological structures namely Truncated Octahedron (TO) (with variable strut size) and Cubic (C) were used. From the morphological characterization, it was found that fabricated iron scaffold possessed interconnected porosity varying from 50.70%-80.97% which included the random microporosities in the strut and designed macroporosity. Furthermore, it was inferred that the topology of the iron scaffold significantly affected its degradation properties and cytocompatibility. Increase in the weight loss, corrosion rate and reduction in cell viability with the reduction in porosity were obtained. The maximum corrosion rate and weight loss achieved was 1.64 mmpy and 6.4% respectively. Direct cytotoxicity test results revealed cytotoxicity, while prepared iron scaffold samples exhibited excellent hemocompatibility and anti-platelet adhesion property. A comparative study with relevant literature was performed and it was established that the developed iron scaffold exhibited favorable degradation and biological properties which could be tailored to suit appropriate bone tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.