Abstract

In this paper, Mg–Nd–Zn–Zr alloy (denoted as JDBM) coated with hydrofluoric acid (HF) chemical conversion film (MgF2) was researched as a potential biodegradable cardiovascular stent material. The microstructures, in vitro degradation and biocompatibility were investigated. The field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) showed that a compact MgF2 film was formed on the surface of JDBM. The corrosion rate decreased in artificial plasma from 0.337 to 0.253mm·y−1 and the electrochemical measurement demonstrated that the corrosion resistance of JDBM alloy could be obviously improved due to the protective MgF2 film on the surface of the substrate. Meanwhile, the hemolysis ratio of JDBM decreased from 52.0% to 10.1% and the cytotoxicity met the requirement of cellular application after HF treatment. In addition, JDBM and MgF2 film showed good anti-platelet adhesion, which is a very favorable property for implant material in contact with blood directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.