Abstract

Arylacetamide deacetylase (AADAC) is a deacetylation enzyme present in the mammalian liver, gastrointestinal tract, and brain. During our search for mammalian enzymes capable of metabolizing N-acetylserotonin (NAS), AADAC was identified as having the ability to convert NAS to serotonin. Both human and rodent recombinant AADAC proteins can deacetylate NAS in vitro, although the human AADAC shows markedly higher activity compared with rodent enzyme. The AADAC-mediated deacetylation reaction can be potently inhibited by eserine in vitro. In addition to NAS, recombinant hAADAC can deacetylate melatonin (to form 5-methoxytryptamine) and N-acetyltryptamine (NAT) (to form tryptamine). In addition to the in vitro deacetylation of NAS by the recombinant AADAC proteins, liver (mouse and human) and brain (human) extracts were able to deacetylate NAS; these activities were sensitive to eserine. Taken together, these results demonstrate a new role for AADAC and suggest a novel pathway for the AADAC-mediated metabolism of pineal indoles in mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.