Abstract

Inhalation is the main route of nanoparticles (NP) exposure during manufacturing. Although many mechanisms of toxicity have been described, the interaction of NP with relevant pneumocytes organelles is not widely understood. Considering that the physicochemical properties of NP influence their toxicological responses, the objective of this study was to evaluate whether exposure to different NP, crystalline Fe3O4 NP and amorphous SiO2 NP could alter pneumocytes organelles in alveolar epithelial cells. To achieve this goal, cell viability, ultrastructural changes, lysosomal damage, mitochondrial membrane potential (MMP), lipid droplets (LD) formation and cytokines production were evaluated by MTT, electron microscopy, lysotracker red staining, JC-1, Oil Red staining and Milliplex® assay respectively. Both NP were observed within lamellar bodies (LB), lysosomes, and cytoplasm causing morphological changes. Exposure to SiO2 NP at 6 h induced lysosomal activation, but not Fe3O4 NP. MMP decreased and LD increased at the highest concentrations after both NP exposure. Pro-inflammatory cytokines were released only after SiO2 NP exposure at 48 h. These results indicate that SiO2 NP have a greater impact than Fe3O4 NP on organelles responsible for energy, secretion, degradation and metabolism in pneumocytes leading to the development of respiratory disorders or the exacerbation of preexisting conditions. Therefore, the established biocompatibility for amorphous NP has to be reconsidered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.