Abstract

BackgroundSynthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence.ResultsMicroscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion.ConclusionThe data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects.

Highlights

  • Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes

  • The purpose of this study was to examine the influence of fiber length on isolated primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 (JM-100) glass fibers (8, 10, 16, and 20 μm)

  • Data from Blake et al revealed incomplete phagocytosis by rat alveolar macrophages occurred with glass fibers ≥ 17 μm in length [7]. These results suggest human alveolar macrophages can completely phagocytize fiber lengths that rat alveolar macrophages can not

Read more

Summary

Introduction

Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. The development of the dielectrophoretic classifier by Baron and colleagues has aided in the study of monodisperse size-selected fiber samples on lung cell activation and toxicity [3]. This classifier separates fibers by length using dielectrophoresis that involves the movement of neutral particles in a gradient electric field [3,4]. Rodent macrophage toxicity and activation have previously been demonstrated in vitro in our laboratory using these length-classified fibers and fiber length was an important determinant [5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call