Abstract

To determine cyclic biomechanical properties of gap osteotomized adult equine tibiae stabilized with an equine interlocking nail (EIN). In vitro experimental biomechanical investigation. Thirteen adult equine cadaveric tibiae. Adult equine tibiae with transverse, midshaft, 1-cm gap osteotomies, stabilized with an equine interlocking nail, underwent cyclic biomechanical testing in vitro under axial compression, 4-point bending, and torsion. Different specimens were subjected to different load levels that represented estimated in vivo loads at 2 Hz for 740,000 cycles. Fatigue life and gap strain were calculated. Compression and bending, but not torsional, fatigue life were longer than time necessary for bone healing. Compressive, but not bending or torsional, gap strains were small enough to be compatible with fracture healing by primary bone formation. Gap strains for compressive, bending, and torsional loads were compatible with indirect, or secondary, bone formation. Further modification should be made to the equine interlocking nail to increase bending stiffness and torsional fatigue life. The stainless steel equine intramedullary interlocking nail is unlikely to provide appropriate long-term stability for fracture healing in adult equine tibiae without modifications in the nail design and material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.