Abstract

Skin is being increasingly exposed to artificial blue light due to the extensive use of electronic devices, which can induce cell oxidative stress, causing signs of early photo aging. The Melissa officinalis phytocomplex is a new standardized cosmetic ingredient obtained by an in vitro plant cell culture with a high content of rosmarinic acid. In this study, we examine the activity of the Melissa officinalis phytocomplex to protect skin against blue light and infrared damages, evaluating the ROS (Radical Oxygen Species) level in keratinocyte cell line from human skin (HaCaT) and Nrf2 (Nuclear factor erythroid 2-related factor 2), elastin, and MMP1 (Matrix Metalloproteinase 1) immunostaining in living human skin explants ex vivo. This phytocomplex demonstrates antioxidant activity by reducing ROS production and thus the oxidant damage of the skin caused by UV and blue light exposure. In addition, it inhibits blue light-induced Nrf2 transcriptional activity, IR-induced elastin alteration, and IR-induced MMP-1 release. This Melissa officinalis phytocomplex is a new innovative active ingredient for cosmetic products that is able to protect skin against light and screen exposure damages and oxidative stress.

Highlights

  • Melissa officinalis L. is an edible perennial herb of the Lamiaceae family

  • We demonstrate the efficacy of a Melissa officinalis product obtained by in vitro cell cultures to protect the skin against blue light and infrared exposed batches (IR) damages

  • The findings of the present study suggested that the Melissa officinalis phytocomplex is a new standardized cosmetic ingredient obtained by an in vitro plant cell culture with a high effectiveness to protect skin against oxidative stress, blue light, and irradiations of infrared damages

Read more

Summary

Introduction

Melissa officinalis L. (lemon balm) is an edible perennial herb of the Lamiaceae family. Melissa officinalis is reputed in folk medicine for memory-enhancing effects, promoting long life, action against gastrointestinal disorders, rheumatism, Alzheimer’s, thyroid diseases, colic, anemia, nausea, vertigo, syncope, asthma, bronchitis, amenorrhea, cardiac disorders, epilepsy, insomnia, migraines, nervousness, malaise, depression, psychosis, hysteria, and wounds [2]. Several scientific papers confirm the medicinal effectiveness of Melissa officinalis preparations, as well as its antioxidant and other properties suggesting its use for the prevention of oxidative stress-related diseases [3]. The bioactivity of Melissa officinalis extracts is mainly attributed, as for any other plant formulation, to the qualitative and quantitative composition of secondary metabolites (i.e., phenolic acids, flavonoids, and terpenoids). Rosmarinic acid is a caffeic acid ester with 3,4-dihydroxyphenyllactic acid, and it is a main bioactive component of the Melissa officinalis extracts [1]. The rosmarinic acid and phenolic acids content in the Melissa officinalis extract is highly variable. The variability is associated with multiple factors, which are difficult to control: seasons, plant age, geographical growing areas, and tissues used for the preparation of products [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call