Abstract

BackgroundThe aim of this work was to create a xenogeneic cell scaffold complex with rabbit bladder acellular matrix and rat hair follicle stem cells, to study the feasibility of construct tissue engineer bladder through biocompatibility of hair follicle stem cells and heterogeneous bladder acellular matrix.Material and MethodsNew Zealand rabbit bladder acellular matrix was prepared. Scanning electron microscope and Masson staining were used to analyse the acellular material. Two-steps precipitation method was used to place the third generation of hair follicle stem cells onto the surface of the bladder acellular matrix. The in vitro cell growth on the scaffold complex was regularly monitored through an inverted microscope. Cell growth curve was established and histological examination and scanning electron microscopic were used to analyse the progresses of the cell growth on the matrix material.ResultsThe prepared bladder acellular matrix was white, translucent and membranous. It possessed a fibrous network and collagen structure without any significant cell residues as displayed by the scanning electron microscope, and Masson staining. After 48 h of culture, observation by inverted microscope showed that the hair follicle stem cells grew well around the bladder acellular matrix. After 1 week of culture, scanning electron microscopy showed that the hair follicle stem cells spread and adhered on the surface of the scaffold.ConclusionsThe in vitro culture of rat hair follicle stem cells and the rabbit bladder acellular matrix possessed a good biocompatibility, which provides a good experiment support for hair follicle stem cells to repair the bladder defects disease.

Highlights

  • The aim of this work was to create a xenogeneic cell scaffold complex with rabbit bladder acellular matrix and rat hair follicle stem cells, to study the feasibility of construct tissue engineer bladder through biocompatibility of hair follicle stem cells and heterogeneous bladder acellular matrix

  • After 48 h of culture, observation by inverted microscope showed that the hair follicle stem cells grew well around the bladder acellular matrix

  • After 1 week of culture, scanning electron microscopy showed that the hair follicle stem cells spread and adhered on the surface of the scaffold

Read more

Summary

Introduction

The aim of this work was to create a xenogeneic cell scaffold complex with rabbit bladder acellular matrix and rat hair follicle stem cells, to study the feasibility of construct tissue engineer bladder through biocompatibility of hair follicle stem cells and heterogeneous bladder acellular matrix. Congenital malformations, inflammations, tumors and trauma can lead to the loss of bladder tissues structure or function, causing great suffering to the patients. In severe cases, they can lead to the decline in renal function and kidney failure. Autologous nonurologic tissue or synthetic polymeric materials were used to repair or replace the bladder defect. Since these materials cannot fully replace the function of the original tissues and organs, they can result in several adverse effects (Sumino and Mimata 2013; Xie. Li et al SpringerPlus (2016) 5:1461.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call