Abstract

In vitro expansion of mesenchymal stem cells (MSCs) has been implicated in loss of multipotency, leading to impaired chondrogenic potential and an eventual therapeutic effect, as reported in our previous study. However, the precise regulatory mechanism is still unclear. Here, we demonstrate that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were involved in transformation of MSCs induced by in vitro culture based on the comparative profiling of in vitro cultured bone marrow MSCs at passage 3 (P3 BMSCs) vs. fresh P0 BMSCs by microarray analysis. Indeed, RT-PCR and Western blot analysis showed significantly lower expression levels of three key UPR-related molecules, ATF4, ATF6 and XBP1, in P3 BMSCs than P0 BMSCs. Further, we found that UPR suppression by 4-phenylbutyrate (4-PBA) reduced the chondrogenic potential of P0 BMSCs and further cartilage regeneration. Conversely, UPR induction by tunicamycin (TM) enhanced the chondrogenic differentiation of P3 BMSCs and the therapeutic effect on cartilage repair. Thus, the decline in the chondrogenic potential of stem cells after in vitro culture and expansion may be due to changes in ER stress and the UPR pathway.

Highlights

  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapeutic approaches in regenerative medicine because of their multipotentiality

  • There were 1143 upregulated and 3181 downregulated transcripts in the passage 3 (P3) bone marrow-derived MSCs (BMSCs) compared with the P0 BMSCs (Fig. 1 a)

  • Based on hierarchical clustering analysis, we found that most genes involved in unfolded protein response (UPR) were downregulated in P3 BMSCs (Fig. 1 c)

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) are promising candidates for cell therapeutic approaches in regenerative medicine because of their multipotentiality. Long- [2,3,4] or short-term [5, 6] in vitro cultures lead to Recently, it was found that endoplasmic reticulum (ER) stress caused by the accumulation of unfolded or misfolded proteins in the ER plays an important role during the process of stem cell differentiation under physiological or pathophysiological conditions [8, 9]. Downregulation of ATF4, a downstream mediator of PERK, mitigates the expression of cartilage markers [18]. These findings suggested that ER stress and the UPR pathway play crucial roles in stem cell differentiation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call