Abstract

Manipulating the degradation rate of biomedical magnesium alloys poses a challenge. The characteristics of a microarc oxidation (MAO), prepared in phytic acid, and poly(L-lactic acid) (PLLA) composite coating, fabricated on a novel Mg-1Li-1Ca alloy, were studied through field emission scanning electron microscopy (FE-SEM), electron probe X-ray microanalysis (EPMA), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The corrosion behaviors of the samples were evaluated via hydrogen evolution, potentiodynamic polarization and electrochemical impedance spectroscopy in Hanks' solution. The results indicated that the MAO/PLLA composite coatings significantly enhanced the corrosion resistance of the Mg-1Li-1Ca alloy. MTT and ALP assays using MC3T3 osteoblasts indicated that the MAO/PLLA coatings greatly improved the cytocompatibility, and the morphology of the cells cultured on different samples exhibited good adhesion. Hemolysis tests showed that the composite coatings endowed the Mg-1Li-1Ca alloys with a low hemolysis ratio. The increased solution pH resulting from the corrosion of magnesium could be tailored by the degradation of PLLA. The degradation mechanism of the composite coatings was discussed. The MAO/PLLA composite coating may be appropriate for applications on degradable Mg-based orthopedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call