Abstract

In vitro conservation of Mandevilla moricandiana was performed by slow-growth storage and encapsulation–dehydration. For slow-growth storage, half- and full-strength Murashige and Skoog (MS) medium and Woody Plant Medium, with or without sorbitol, mannitol, or glucose, were used to test the development of nodal segments and maintenance of plant viability after 6 mo. Recovery was performed using MS medium. The basal medium and carbon source did not interact, and only the carbon source had a significant effect on slow-growth storage and recovery. Sorbitol and glucose, individually or in combination, promoted development of plants with a low multiplication rate during the slow-growth period and a high multiplication rate during the recovery period. For encapsulation–dehydration, nonencapsulated and sodium alginate-encapsulated nodal segments were evaluated to determine their viability after storage at different temperatures. Nonencapsulated nodal segments gave 16.6% recovery after 60 d at 25°C. The effects of preculturing encapsulated nodal segments in MS medium with 0.4 or 0.75 M sucrose followed by dehydration were also tested. Capsules precultured for 48 h in the presence of 0.40 M sucrose and dehydrated to 40% moisture content showed 93.3% recovery. These conditions were then used to store capsules under different temperatures and for different lengths of time. The precultured capsules showed ca. 30% recovery after storage for 30 d at 4°C. Well-developed plantlets regenerated from encapsulated, stored nodal segments were rooted and acclimatized successfully, with 100% survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call