Abstract

The antibiotic compound, rifampicin (RFP), was loaded into porous reinforced β-tricalcium phosphate (β-TCP) scaffolds using three different solution adsorption methods. This resulted in drug delivery systems (DDS) generated by vacuum adsorption (VA), dynamic adsorption (DA), and static adsorption (SA). In vitro examination of the drug loading and release profiles of the DDS indicated that the unit mass of RFP loaded into the scaffold by the VA method (0.44 mg/g) was higher than that achieved by SA (0.42 mg/g) or DA (0.38 mg/g) (P < 0.05). The mechanical strength had no significant change after RFP-loading (P > 0.05). Moreover, there were no significant differences among the mechanical strength of three β-TCP DDS generated by loading RFP using SA, DA, and VA (P > 0.05). In vitro release testing showed an initial burst release of RFP from the three different DDS within the first 3 h and in the first 51 h, the cumulative release of RFP from VA-DDS, DA-DDS, and SA-DDS had reached 56.2, 83.6, and 88.6 %, respectively. Complete RFP release had occurred from VA-DDS, DA-DDS, and SA-DDS after 23, 17, and 15 days, respectively. As the VA-DDS method showed improved RFP loading and a more sustained drug release, this method is recommended for solution adsorption drug loading into porous β-TCP scaffolds to form a DDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call