Abstract

AbstractThis study presents a comprehensive, side‐by‐side analysis of chemical, thermal, mechanical, and morphological changes in four polymers used in tissue engineering: poly(glycerol‐sebacate) (PGS), poly(lactic acid) (PLA)/poly(ε‐caprolactone) (PCL) blend, poly(lactic‐co‐glycolic acid) (PLGA), and Texin 950, a segmented polyurethane resin (PUR). Polymer foams were created using a salt‐leaching technique and then analyzed over a 16‐week period. Biodegradation was analyzed by examining the morphology, thermal properties, molecular weight, chemical, and mechanical properties using scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, attenuated total reflectance‐Fourier transform infrared spectroscopy, thermogravimetric analysis, and compression testing. PGS underwent the most rapid degradation and was hallmarked by a decrease in compressive modulus. PLA/PCL blend and PLGA both had rapid initial decreases in compressive modulus, coupled with large decreases in molecular weight. Surface cracks were observed in the PUR samples, accompanied by a slight decrease in compressive modulus. However, as expected, the molecular weight did not decrease. These results confirm that PUR does not undergo significant degradation but may not be suitable for long‐term implants. The biodegradation rates of porous PGS, PLA/PCL blend, and PLGA found in this study can guide their use in tissue engineering and other biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.