Abstract

Gradual deterioration of red blood cells (RBCs) due to mechanical stress (chronic hemolysis) is unavoidable during treatments that involve extracorporeal blood circulation, such as hemodialysis (HD). This effect is generally undetectable and does not generate any acute symptoms, but it leads to an increase in plasma free hemoglobin (fHb). There are no absolute safety levels for fHb increase, indicating the need for an empirical evaluation using comparative testing. The increase in fHb levels was investigated in vitro by applying double‐needle double‐pump HD (HD‐DNDP), a new modality in which arterial and venous pumps both run continuously. fHb was measured during typical and worst‐case simulated dialysis treatments (double‐needle single‐pump HD [HD‐DNSP], hemodiafiltration [HDF‐DN], single‐needle double‐pump HD [HD‐SNDP], and HD‐DNDP) performed in vitro using bovine blood for 4 h. Hemolysis‐related indices (fHb%; index of hemolysis, IH; and normalized IH) were calculated and used for comparison. The increase in fHb during either HDF‐DN or HD‐SNDP with Artis and AK200 dialysis machines was similar, while the fHb at the maximum real blood flow rate (Qbreal) at the completion of the HD‐DNDP treatment on Artis was higher than that for HD‐DNSP using a Phoenix dialysis machine (fHb % = 1.24 ± 0.13 and 0.92 ± 0.12 for the Artis machine with HD‐DNDP at Qbreal = 450 mL/min and Phoenix with HD‐DNSP at Qbreal = 500 mL/min, respectively). However, the fHb levels increased linearly, and no steep changes were observed. The increases observed during HD‐DNDP were the same order of magnitude as those for widely used bloodlines and treatment modes for delivering dialysis treatments. The observed results matched literature findings, and thus the measured fHb trends are not predicted to have clinical side effects. HD‐DNDP treatment with Artis does not merit any additional concern regarding mechanical stress to RBCs compared with that observed for routinely used dialysis treatments, bloodlines and machines. Although the in vitro measurement of the fHb increase in bovine blood does not allow a prediction of the absolute level of blood mechanical damage or the possible effects in humans, such measurements are valuable for assessing hemolytic harm by performing tests comparing the proposed treatment with existing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.