Abstract
CRISPR-Cas9 has transformed biomedical research and medicine through convenient and targeted manipulation of DNA. Time- and spatially-resolved control over Cas9 activity through the recently developed very fast CRISPR (vfCRISPR) system have facilitated comprehensive studies of DNA damage and repair. Understanding the fundamental principles of Cas9 binding and cleavage behavior is essential before the widespread use of these systems and can be readily accomplished in vitro through both cleavage and electrophoretic mobility shift assays (EMSA). The protocol for in vitro cleavage consists of Cas9 with guide RNA (gRNA) ribonucleoprotein (RNP) formation, followed by incubation with target DNA. For EMSA, this reaction is directly loaded onto an agarose gel for visualization of the target DNA band that is shifted due to binding by the Cas9 RNP. To assay for cleavage, Proteinase K is added to degrade the RNP, allowing target DNA (cleaved and/or uncleaved) to migrate consistently with its molecular weight. Heating at 95°C rapidly inactivates the RNP on demand, allowing time-resolved measurements of Cas9 cleavage kinetics. This protocol facilitates the characterization of the light-activation mechanism of photocaged vfCRISPR gRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.