Abstract

INTRODUCTION: While the use of zinc nanoparticles (ZnNPs) as an antibacterial agent in the biomedical industry has recently attracted significant attention, collagen has aroused significant interest as a biomaterial in medical and tissue engineering applications.
 OBJECTIVES: In order to create biofilm loaded with biosynthesized ZnNPs for use in chronic wound healing applications, type-I collagen was extracted from the study's subject. by the acid soluble collagen technique, collagen was isolated from the fish skin of the trevally and identified by SDS-PAGE. Aqueous extract from Cassia fistula leaves was also used to greenly manufacture stable ZnNPs, which were then characterized by UV-Vis, FTIR, and XRD measurements.
 METHODS: Collagen and ZnNPs were then added to polyvinyl alcohol (PVA), creating a thin biofilm that had a high biocompatibility due to the production method's absence of a chemical reducer and crosslinking agent. When tested against the harmful bacteria, both ZnNPs alone and PVA/Collagen/ZnNPs biofilms showed potent antibacterial activity.
 RESULTS: By using the MTT test, the cytotoxic effects of collagen and ZnNPs on the Vero cell line were evaluated. With 97.76% wound closure, the PVA/Collagen/ZnNPs biofilm demonstrated strong in vitro wound scratch healing efficacy.
 CONCLUSION: The findings show that the PVA/Collagen/ZnNPs film dramatically increased cell migration by 40.0% at 24 hours, 79.20% at 48 hours, and 97.76% at 74 hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call