Abstract

Senna species and anthraquinone derivatives generated by these organisms, rhein and aloe-emodin, exert anti-inflammatory effects. These species present a similar morphology but produce different ingredients when they are used as medicinal products. In this study, a DNA barcoding- (Bar-) high-resolution melting (HRM) technique was developed using internal transcribed sequence 2 (ITS2) to differentiate between Senna alata and Senna tora as a result of significant differences in their melting profiles. We used this approach for confirmation of S. alata and S. tora raw materials, and we examined the chondroprotective properties of the ethanolic extracts of S. alata and S. tora using a porcine model of cartilage degradation induced by a combination of interleukin-17A (IL-17A) and IL-1β. We found that both Senna ethanolic extracts, at a concentration of 25 μg/mL, effectively prevented cartilage degradation. Rhein and aloe-emodin were present in the extract of S. alata but not in that of S. tora. We observed a reduction in the release of sulfated glycosaminoglycans (S-GAGs) and hyaluronic acid (HA) into media in both treatments of Senna extracts, which indicated proteoglycan preservation in explant tissues. These results suggest that neither rhein nor aloe-emodin are the main factors responsible for cartilage-protecting properties. Taken together, results show that both S. alata and S. tora are promising for further development as anti-osteoarthritic agents and that Bar-HRM using ITS2 could be applied for species confirmation with Senna products.

Highlights

  • Osteoarthritis (OA) involves joint degeneration, especially in the elderly, and is caused by proinflammatory cytokines (e.g., interleukin-1 (IL-1), tumor necrosis factor α (TNFα), oncostatin M (OSM), IL-6, and IL-17), leading to an imbalance in the biochemical processes in articular cartilage [1,2,3]

  • The polymerase chain reaction (PCR) products were confirmed by DNA sequencing as similar PCR sequences were obtained for both S. alata (MK685898) and S. tora (MK685899)

  • The internal transcribed sequence 2 (ITS2) primer was able to distinguish between S. alata and S. tora by high-resolution melting (HRM), resulting in great amplification and different melting curve characteristics both for fresh and for dried samples (Fig 2C and 2D)

Read more

Summary

Introduction

Osteoarthritis (OA) involves joint degeneration, especially in the elderly, and is caused by proinflammatory cytokines (e.g., interleukin-1 (IL-1), tumor necrosis factor α (TNFα), oncostatin M (OSM), IL-6, and IL-17), leading to an imbalance in the biochemical processes in articular cartilage [1,2,3]. Cytokines IL-1β and IL-17A are detected in synovial fluid (SF) of rheumatoid arthritis (RA) and OA patients [3,4,5]. These compounds are well known to be involved in the inflammatory process and cartilage degradation, by which IL-17A strongly synergizes with other inflammatory cytokines (e.g., IL-1, TNFα, IL-6) to stimulate cartilage collagen and proteoglycan breakdown via matrix-degrading enzymes (e.g., matrix metalloproteinase (MMP) 1, 3, and 13) [1,2,3, 6]. Naturally-derived or occurring ingredients from medicinal plants are a promising source for drug discovery for DMOAD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.