Abstract

Trimegestone (TMG) is a novel 19-norpregnane progestin under development for hormone replacement therapy and oral contraception. The objective of the current study was to characterize the potency and steroid receptor selectivity of TMG in several in vitro assays and to compare its activity to that of medroxyprogesterone acetate (MPA). TMG and MPA had a similar competitive binding affinity for human and rabbit progesterone receptor (PR). However, TMG had a significantly higher affinity for rat PR (IC 50 = 3.3 nM) than MPA (IC 50 = 53.3 nM). In T47D cells, both compounds increased alkaline phosphatase activity and cell proliferation with comparable potencies (EC 50s of 0.1 nM and of 0.02 nM, respectively). To further characterize the progestational activity and steroid receptor selectivity, we established an immortalized human endometrial stromal cell line (HESC-T). This cell line lacks endogenous estrogen receptor (ER) and PR but does have functional glucocorticoid receptors (GR). When ER is transiently expressed in the cells, 17β-estradiol (E 2) induces PR, allowing the study of PR-regulated genes. In HESC-T cells expressing exogenous ER, and therefore PR, both TMG and MPA increased HRE-tk-luciferase activity tenfold with an EC 50 of 0.2 nM. In HESC-T cells without exogenous ER, and therefore no PR, TMG did not induce HRE-tk-luciferase activity, whereas MPA induced the reporter activity with an EC 50 of about 10 nM. This MPA-induced reporter activity is believed to be mediated through GR. The steroid receptor selectivity of TMG was further evaluated using the HRE-tk-luciferase assay in the human lung carcinoma cell line A549, which contains GR but no PR. In these cells TMG had no effect on luciferase activity, whereas MPA increased the reporter activity in a dose-dependent manner with an EC 50 of ∼30 nM. Furthermore, HRE-tk-luciferase assay in mouse fibroblast cell line L929, which expresses androgen receptor (AR) but no PR, showed that TMG had weak antiandrogenic activity whereas MPA had androgenic activity. In summary, data from several in vitro assays demonstrate that TMG is a potent progestin with a better receptor selectivity profile than MPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call