Abstract

One of the obstacles limiting the application of electrospun scaffolds for tissue engineering is the nanoscale pores that inhibit cell infiltration. In this article, we describe a technique that uses ice crystals as templates to fabricate cryogenic electrospun scaffolds (CES) with large three-dimensional and interconnected pores using poly(D,L-lactide) (PLA). Manipulating the humidity of the electrospinning environment the pore sizes are controlled. We are able to achieve pore sizes ranging from 900 +/- 100 microm(2) to 5000 +/- 2000 microm(2) depending on the relative humidity used. Our results show that cells infiltrated the CES up to 50 microm in thickness in vitro under static culture conditions whereas cells did not infiltrate the conventional electrospun scaffolds. In vivo studies demonstrated improved cell infiltration and vascularization in the CES compared with conventionally prepared electrospun scaffolds. In gaining control of the pore characteristics, we can then design CES that are optimized for specific tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.