Abstract

Circulating tumor DNA (ctDNA) analysis has been shown to aid in both the detection of cancer and evaluation of somatic mutations in tumors. CtDNA concentration in plasma increases in proportion to tumor volume and/or metabolic activity and growth; however, this principle has yet to be applied to cell culture. We hypothesized that cell line-specific cell-free DNA (cfDNA) can be used to measure cell viability and cell survival in cell culture. Clonogenic assays on non-small cell lung cancer (NSCLC) cell lines H322, A549 and H322 were exposed to radiation doses of 0, 4 and 8 Gy. Prior to colony fixation and counting, cfDNA was extracted and quantified from cell culture media. The correlation between cell line-specific cfDNA and number of colonies grown on culture plates was examined. An H1299:A549 coculture model was used to evaluate the differential release of cell line-specific cfDNA. The results of this work indicate a strong correlation between CfDNA quantification from cell culture media and clonogenic survival at all radiation doses and in all cell lines tested (R2 range = 0.77-0.99). Cell survival curves derived from cfDNA were virtually indistinguishable from matched traditional clonogenic survival data ( P > 0.05; no significant difference exists between clonogenic curves). CfDNA quantification also accurately estimates colony count in a two-cell-line coculture model. In conclusion, cell-free DNA quantification from cell culture media can be used to measure cell survival, and appears suitable for development in a high-throughput clonogenic assay and radiosensitizer screening platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.