Abstract

Chlorosomes in the green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, e, or f molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, in vitro C132-dealkoxycarbonylations of zinc chlorophyll a derivatives bearing a methyl-, ethyl- or propyl-esterifying group and its methyl ester analogs with additional alkyl and hydroxy groups at the C132-position were examined using the BciC enzyme. The BciC-catalyzed reaction activity for the C132-methoxycarbonylated substrate was comparable to that for the ethoxycarbonylated compound; however, depropoxycarbonylation did not proceed. The BciC enzymatic demethoxycarbonylation of zinc methyl C132-alkylated pheophorbides a was gradually suppressed with the elongation of the alkyl chain and finally became inactive for the propyl substrate. The reaction of the C132-hydroxylated substrate (allomer) was accelerated compared to that of the C132-methyl analog possessing a similar steric size, and gave the corresponding C132-oxo product via further air-oxidation. All of the abovementioned enzymatic reactions occurred for one of the C132-epimers with the same configuration as in chlorophyllide a. The above substrate specificities and product distributions indicated the stereochemistry and size of the BciC enzymatic active site (pocket).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.