Abstract

A variety of DNA polymerases, synthesizing in vitro on an UV-irradiated phi X174 DNA template, terminate synthesis one nucleotide before the 3' pyrimidines of putative dimers on the template. We have devised a system using Escherichia coli DNA polymerase I (Klenow fragment) that can synthesize past at least some of these dimers. The bypass is carried out in a multistep process--first, the incorporation of nucleotides opposite the pyrimidines in the dimer and, then, the addition of nucleotides complementary to the bases distal to the dimer. The insertion of a nucleotide opposite the first (3') pyrimidine of a putative dimer in the presence of Mn2+ occurs in a concentration-dependent fashion with a 3- to 4-fold preference for purine nucleotides over pyrimidine nucleotides. In the presence of Mg2+, insertion is less frequent. Correlation of these results with in vivo mutation data suggests a role for the polymerase in determining the spectrum of base substitution mutagenesis in SOS induced cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.