Abstract

This work investigates the degradation of PLGA implants in an aqueous medium maintained at physiological pH ≈ 7.4. Two limiting systems are also investigated, which involve the degradation of PLGA microspheres in two different media characterized by: (i) a non-regulated pH, for emulating the autocatalyzed degradation in the implant core; and (ii) a regulated physiological pH, for emulating the uncatalyzed degradation at the implant surface. The degradation experiments were carried out along 40–50 days, and samples withdrawn during this period were characterized by gravimetry, electronic microscopy, and size exclusion chromatography. Experimental results suggest that PLGA implants are degraded according to a time-variant spatial pattern, which depends on the pH of the surrounding medium. Initially, the implants suffered a typically bulk erosion process, governed by the acidification of the implant core; and after breakage of the implant wall, the regulated physiological pH induces a surface erosion process. The two auxiliary microsphere-based experiments were useful to elucidate the degradation phenomena occurring in the PLGA implants. The evolution of the mass loss and the weight-average molecular weight along the degradation can be successfully predicted by simple mathematical models based on first-order kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.